City of Kyle Annual Drinking Water Quality Report PWS ID# TX1050002 CITY OF KYLE, TEXAS Annual Water Quality Report for the period of January 1 to December 31, 2018 This report is intended to provide you with important information about your drinking water and the efforts made by this water system to provide safe drinking water. #### CITY OF KYLE Uses purchased surface water and treated groundwater SURFACE WATER COMES FROM: 1) Canyon Lake via Lake Dunlap, Guadalupe County through the Guadalupe-Blanco River Authority (GBRA) - 1) San Antonio Segment Edwards Aquifer, Hays County and - 2) Barton Springs Segment Edwards Aquifer, Hays County For more information about this report contact: Tim Samford, Division Manager Treatment Operations Phone # 512-262-3024 or email pw@cityofkyle.com. Este reporte incluye información importante sobre el agua para tomar. Para asistencia en español, favor de llamar al telefono 512-262-3024 o email pw@cityofkyle.com. NOTICE: This customer confidence report is only applicable to persons who receive their water from the City of Kyle. If you do not receive your water service from the City of Kyle, please contact your water provider to obtain your confidence report. | Sources of Drinking Water | 3 | |--|------| | Federal and State Regulations | 4-6 | | Information About Source Water Assessments | 7 | | Definitions of Water Quality Test Results | 8 | | Water Quality Results | 9-11 | ### Sources of Drinking Water NOTE: All public and private water systems are required to include certain regulatory language in their annual water quality reports. To see the results of the TCEQ testing for Kyle's water system, see pages 10 and 11 of this water quality report. The sources of drinking water (including tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals — and in some cases radioactive material — and can pick up substances resulting from the presence of animals or from human activity. Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. ## Contaminants that MAY be present in source water include: - * Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming. - * Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife. - * Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses. - * Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems. - * Radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 800-426-4791. ## Federal and State Regulations NOTE: All public and private water systems are required to include this and other regulatory language in their annual water quality reports. To see the results of the TCEQ testing for Kyle's water system, see pages 10 and 11 of this water quality report. In order to ensure that tap water is safe to drink, the U.S. Environmental Protection Agency (EPA) prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. The Federal Drug Administration regulations establish limits for contaminants in bottled water, which must provide the same protection for public health. Contaminants may be found in all drinking water that may cause taste, color or odor problems.* *It's important to note that these types of issues are not necessarily causes for health concerns. For more information on taste, odor, or color of drinking water, please contact the system's business office. The Texas Commission on Environmental Quality (TCEQ) completed an assessment of Kyle's source water. Those results indicate that some sources of water are susceptible to certain contaminants*. NOTE: Any detection of these contaminants may be found in this Consumer Confidence Report (Water Quality Results) beginning on page 10. *The sampling requirements for Kyle's water system are based on this susceptibility and previous sample data. For more information on source water assessments and protection efforts at the City of Kyle, contact Tim Samford at 512-262-3024 or email pw@cityofkyle.com. ## Regulations Continued (1) NOTE: All public and private water systems are required to include this and other regulatory language in their annual water quality reports. To see the results of the TCEQ testing for Kyle's water system, see pages 10 and 11 of this water quality report. Some people can be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immunocompromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. If you or family members are at risk, you should seek advice about drinking water from your physician or health care provider. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline, toll free, at 1-800-426-4791. If present*, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The City of Kyle is responsible for providing high quality drinking water, but we cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have the water inside your home tested by a private, third-party entity. *See page 10 of this report for lead test results. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. ## Regulations Continued (2) NOTE: All public and private water systems are required to include this and other regulatory language in their annual water quality reports. To see the results of the TCEQ testing, see pages 10 and 11 of this water quality report. ## Kyle does not add fluoride to its drinking water. At low levels, fluoride can help prevent cavities. Children drinking water containing more than 2 milligrams per liter (mg/L) of fluoride may develop cosmetic discoloration of their permanent teeth, called dental fluorosis. For 2018, the drinking water provided by the City of Kyle water system had a naturally occuring fluoride concentration of 1.78 mg/L. Drinking water containing more than 4 mg/L of fluoride (the U.S. Environmental Protection Agency's drinking water standard) can increase your risk of developing bone disease. The drinking water in Kyle's municipal water system does not contain more than 4 mg/L of fluoride. For more information, please call City of Kyle Public Works Department at 512-262-3024. Some home water treatment units are also available to remove fluoride from drinking water. To learn more about available home water treatment units, you may call NSF International at 1-877-8-NSF-HELP. ### Information About Source Water Assessments For more information about your sources of water, please refer to the Source Water Assessment Viewer available at the following URL: https://www.tceq.texas.gov/gis/swaview Further details about sources and source-water assessments are available in Drinking Water Watch at the following URL: http://dww2.tceq.texas.gov/DWW/ #### **Additional Information** #### Hardness: The hardness of Kyle's municipal drinking water can vary considerably depending on several factors, including the time of year. This is a result of the amount of groundwater we are using in the system at any given time. Our groundwater resources are the primary contributors of hardness in our system. The average range of hardness is 260-310 mg/L of total hardness (as CaCO3). This is approximately equal to 15-18 grains per gallon in range. #### Fluoride / Fluoridation: Kyle's water supply does NOT have fluoride added to it; the fluoride in our groundwater sources are naturally occuring. #### Water Loss: Water loss is a concern for all water utilities. Here in the City of Kyle, our water loss goal is 15 percent or less. The water loss for the reporting period (January-December, 2018) was 12.9 percent. ## **Public Input:** The Kyle City Council meets on the first and third Tuesdays of each month at Kyle City Hall, located at 100 W. Center Street in Kyle, TX. Occasionally, the council discusses business that pertains to drinking water quality, supply and infrastructure. For more information, agendas and meeting details, please call 512-262-1010 or visit our website at www.cityofkyle.com. Agendas are posted at least 72 hours prior to meetings and are available on the city's website. ## **Definitions of Water Quality Test Results** The tables on the last two pages of this report contain scientific terms and measures, some of which may require explanation. See the list below for what these terms mean. **Avg:** Regulatory compliance with some MCLs are based on running annual average of monthly samples. Maximum Contaminant Level or MCL: The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology. Maximum Contaminant Level Goal or MCLG: The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety. Maximum residual disinfectant level or MRDL: The highest level of a disinfectant allowed in drinking water. There is convincing evidence that the addition of a disinfectant is necessary for control of microbial contaminants. Maximum residual disinfectant level goal or MRDLG: The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants. **MFL**: million fibers per liter (a measure of asbestos) NA: not applicable. NTU: nephelometric turbidity units (a measure of turbidity) pCi/L: picocuries per liter (a measure of radioactivity) **ppb**: micrograms per liter or parts per billion — or one ounce in 7,350,000 gallons of water. **ppm**: milligrams per liter or parts per million — or one ounce in 7,350 gallons of water. ppt: parts per trillion, or nanograms per liter (ng/L) ppq: parts per quadrillion, or pictograms per liter (pg/L) ## City of Kyle 2018 Water Quality Results #### **Regulated Contaminants Detection** Lead and Copper [The City of Kyle's water system is required to have lead and copper tests every three (3) years.] #### **Definitions:** Action Level Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety. Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements that a water system must follow. | Lead & Copper | Date Sampled | MCLG | Action Level (AL) | 90th Percentile | # Sites Over AL | Units | Violation | Likely Contamination Source | |---------------|--------------|------|-------------------|-----------------|-----------------|-------|-----------|--| | Соррег | 2016 | 1.3 | 1.3 | 0.094 | 0 | ppm | N | Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems | | Lead | 2016 | 0 | 15 | 2.6 | 0 | ppb | N | Corrosion of household plumbing systems;
Erosion of natural deposits | #### Water Quality Test Results #### **Regulated Contaminants** | Disinfectants / Disinfection
By-Products | Collection Date | Highest Level
Detected | Range of Levels
Detected | MCLG | MCL | Units | Violation | Likely Source of Contamination | |---|-----------------|---------------------------|-----------------------------|-------------------|-----|-------|-----------|---| | Haloacetic Acids (HAA5) | 2018 | 18.8 | 1.0 - 18.8 | No goal for total | 60 | ppb | N | By-product of drinking water disinfection | | Total Trihalomethanes (TTHM |) 2018 | 64.4 | 7.1 - 64.4 | No goal for total | 80 | ppb | N | By-product of drinking water disinfection | | Inorganic Contaminants | Collection Date | Highest Level
Detected | Range of Levels
Detected | MCLG | MCL | Units | Violation | Likely Source of Contamination | | Barium | 2017 | 0.0561 | 0.0478 - 0.0561 | 2.0 | 2.0 | ppm | N | Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits | | Fluoride | 2018 | 1.78 | 0.21 - 1.78 | 4.0 | 4.0 | ppm | N | Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum factories | | Nitrate [measured as Nitrogen |] 2018 | 1.83 | 0.38 - 1.83 | 10 | 10 | ppm | N | Runoff from fertilizer; Leaching from septic tanks, sewage; Erosion of natural deposits | Water Quality Test Results (continued) | Tracer Quarrey rest | | | | | | | | | |---|------------------------|---------------------------|-----------------------------|------|-----|-------|-----------|---| | Radioactive Contaminants | Collection Date | Highest Level
Detected | Range of Levels
Detected | MCLG | MCL | Units | Violation | Likely Source of Contamination | | Combined Radium 226/228 | 2017 | 1.55 | 1.09 - 1.55 | 0 | 5 | pCi/L | N | Erosion of natural deposits | | Gross alpha excluding radon and uranium | 2017 | 11.1 | 7.9 - 11.1 | 0 | 15 | pCi/L | N | Erosion of natural deposits | | Volatile Organic
Contaminants | Collection Date | Highest Level
Detected | Range of Levels
Detected | MCLG | MCL | Units | Violation | Likely Source of Contamination | | Ethybenzene | 2018 | 0.8 | 0.8 - 0.8 | 700 | 700 | ppb | N | Discharge from petroleum factories; from chemical factories | | Xylenes | 2018 | 3.3 | 1.7 - 3.3 | 10 | 10 | ppm | N | Discharge from petroleum factories; from chemical factories | #### Coliform Bacteria | Maximum Contaminant
Level Goal | Total Coliform Maximum
Contaminant Level | Highest No. of Positive | Fecal Coliform or E. Coli
Max. Contaminant Level | Total No. of Positive
E. Coli or Fecal
Coliform Samples | Violation | Likely Source of Contamination: | |-----------------------------------|---|-------------------------|---|---|-----------|----------------------------------| | 0 | 0 positive monthly sample | 0 (out of 360 tests | s) 2 consecutive positives | 0 | N | Naturally present in environment | **Surface Water Quality Results** Below are the turbidity results: Min 0.01 NTU MCL 0.3 NTU Max 0.09 NTU Avg 0.03 NTU Below are the nitrate results: Nitrate 1.31 mg/L MCL 10.0 mg/L **Appendix D-Unregulated Contaminants** Figure: 30 TAC §290.275(4) Note: only items on the table that were detected are listed here. (1) Chloroform13.3 ug/LNo MCL listed(2) Bromodichloromethane20.3 ug/LNo MCL listed(3) Bromoform8.9 ug/LNo MCL listed #### Disinfection Results (Free chlorine residual* ppm) Min Max Avg Annual 0.65 2.09 1.43 * TCEQ regulations require a free chlorine residual of 0.2 ppm to 4.0 ppm #### **Violations Table** None.